Dec No.	
Reg. No.:	_

Question Paper Code: 20816

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2022.

Fourth Semester

Computer and Communication Engineering

MA 8451 — PROBABILITY AND RANDOM PROCESSES

(Common to : Electronics and Communication Engineering/Electronics and Telecommunication Engineering)

(Regulations 2017)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

- 1. Suppose that two events A and B are mutually exclusive and P[B] > 0. Under what conditions will A and B be independent?
- 2. Balls are tossed at random into 50 boxes. Find the expected number of tosses required to get the first ball in the fourth box.
- 3. X and Y are two continuous random variables whose joint PDF is given by

$$f_{XY}(x, y) = \begin{cases} e^{-(x+y)}, & 0 \le x < \infty, \ 0 \le y < \infty \\ 0 & otherwise \end{cases}$$

Are X and Y independent? Justify.

4. The joint PMF of two random variables X and Y is given by

$$P_{XY}(x,y) = \begin{cases} k(2x+y) & x=1,2; y=1,2\\ 0 & \text{otherwise} \end{cases}$$

where k is a constant What is the value of k?

Distinguish random variable and random process.

6. Draw the state-transition diagram for the Markov chain with the following transition probability matrix

$$P = \begin{bmatrix} 1/2 & 0 & 0 & 1/2 \\ 1/2 & 1/2 & 0 & 0 \\ 1/4 & 0 & 1/2 & 1/4 \\ 0 & 1/2 & 1/4 & 1/4 \end{bmatrix}$$

- 7. State any two properties of the power spectral density.
- 8. The random process X(t) is given by

$$X(t) = Y \cos(2\pi t), t > 0$$

where Y is a random variable that is uniformly distributed between 0 and 2. Find the expected value.

- 9. Define system transfer function.
- 10. When is a system called a linear system?

PART B —
$$(5 \times 16 = 80 \text{ marks})$$

- 11. (a) (i) An aircraft maintenance company bought equipment for detecting structural defects in aircrafts. Tests indicate that 95% of the time the equipment detects defects when they actually exist, and 1% of the time it gives a false alarm that indicates the presence of a structural defect when in fact there is none. If 2% of the aircrafts actually have structural defects, what is the probability that an aircraft actually has a structural defect given that the equipment indicates that it has a structural defect? (8)
 - (ii) Assume the random variable X has the PDF $f_X(x) = \lambda e^{-\lambda x}$, $x \ge 0$. Find the third moment of X, $E[X^3]$.

 \mathbf{Or}

- (b) (i) Messages arrive at a switchboard in a Poisson manner at an average rate of six per hour. Find the probability for each of the following events: (8)
 - (1) Exactly two messages arrive within one hour.
 - (2) No message arrives within one hour.
 - (3) At least three messages arrive within one hour.
 - (ii) The mean weight of 200 students in a certain college is 140 lbs, and the standard deviation is 10 lbs. If we assume that the weights are normally distributed, evaluate the following: (8)
 - (1) The expected number of students that weigh between 110 and 145 lbs.
 - (2) The expected number of students that weigh less than 120 lbs.
 - (3) The expected number of students that weigh more than 170 lbs.
- 12. (a) (i) A fair coin is tossed three times. Let X be a random variable that takes the value 0 if the first toss is a tail and the value 1 if the first toss is a head. Also, let Y be a random variable that defines the total number of heads in the three tosses. (8)
 - (1) Determine the joint PMF of X and Y.
 - (2) Are X and Y independent?
 - (ii) Assume that the random variables X and Y have the joint PDF

$$f_{XY}(x, y) = \begin{cases} \frac{1}{2} x^3 y, 0 \le x \le 2, 0 \le y \le 1 \end{cases}$$

Determine if X and Y are independent.

(8)

Or

(b) (i) The joint PDF of the random variables X and Y is defined as follows: (8)

$$f_{XY}(x,y) = \begin{cases} 25 \ e^{-5y}, \ 0 < x < 0.2, & y > 0 \\ 0, & \text{otherwise} \end{cases}$$

- (1) Find the marginal PDFs of X and Y.
- (2) What is the covariance of X and Y?
- (ii) Assume that the random variable S_n is the sum of 48 independent experimental values of the random variable X whose PDF is given by

$$f_X(x) = \begin{cases} \frac{1}{3}, & 1 \le x \le 4\\ 0, & \text{otherwise} \end{cases}$$

Find the probability that S_n lies in the range $108 \le S_n \le 126$. (8)

- Alan is conducting an experiment to test the mean lifetimes of two sets of electric bulbs labeled A and B. The manufacturer claims that the mean lifetime of bulbs in set A is 200 hours, while the mean lifetime of the bulbs in set B is 400 hours. The lifetimes for both sets are exponentially distributed. Alan's experimental procedure is as follows: He started with one bulb from each set. As soon as a bulb from a given set fails (or burns out), he immediately replaces it with a new bulb from the same set and writes down the lifetime of the burnt-out bulb. Thus, at any point in time he has two bulbs on, one from each set. If at the end of the week Alan tells you that 8 bulbs have failed, determine the following:
 - (i) The probability that exactly 5 of those 8 bulbs are from set B.
 - (ii) The probability that no bulb will fail in the first 100 hours.
 - (iii) The mean time between two consecutive bulb failures.

Or

- On any given day, when he is in town 1, the probability that the next passenger he picks up is going to town 1 is 0.3, the probability that the next passenger he picks up is going to town 2 is 0.2, and the probability that the next passenger he picks up is going to town 3 is 05. When he is in town 2, the probability that the next passenger he picks up is going to town 1 is 0.1, the probability that the next passenger he picks up is going to town 2 is 0.8, and the probability that the next passenger he picks up is going to town 3 is 0.1. When he is in town 3, the probability that the next passenger he picks up is going to town 1 is 0.4, the probability that the next passenger he picks up is going to town 2 is 0.4, and the probability that the next passenger he picks up is going to town 2 is 0.4, and the probability that the next passenger he picks up is going to town 3 is 0.2.
 - (i) Determine the state-transition diagram for the process.
 - (ii) Give the transition probability matrix for the process.
 - (iii) What are the limiting-state probabilities?
 - (iv) Given that the taxi driver is currently in town 2 and is waiting to pick up his first customer for the day, what is the probability that the first time he picks up a passenger to town 2 is when he picks up his third passenger for the day?
- 14. (a) (i) A random process is defined by $X(t) = K \cos wt$, $t \ge 0$, where w is a constant and K is uniformly distributed between 0 and 2. Determine the auto-covariance function of X(t)
 - (ii) The sample function X(t) of a stationary, random process Y(t) is given by $X(t) = Y(t)\sin(wt + \Theta)$ where w is a constant, Y(t) and Θ are statistically independent, and Θ is uniformly distributed between 0 and 2π . Find the autocorrelation function of X(t) in terms of $R_{YY}(T)$.

Or

(b) Two jointly stationary random processes X(t) and Y(t) have the cross-correlation function given by:

$$R_{XY}(T) = 2e^{-2T, T \ge 0}$$

Determine the following:

- (i) The cross-power spectral density $S_{XY}(W)$
- (ii) The cross-power spectral density $S_{YX}(W)$.

- 15. (a) A random process X(t) is the input to a linear system whose impulse response is $h(t) = e^{-t}$, $t \ge 0$. If the autocorrelation function of the process is $R_{XX}(T) = 2e^{-2|T|}$, determine the following:
 - (i) The cross correlation function Rxy(T) between the input process X(t) and the output process Y(t).
 - (ii) The cross correlation function Ryx(T) between the output process Y(t) and the output process X(t).

Or

- (b) (i) For a linear system with random input X(t) the impulse response h(t) and output Y(t). Obtain the cross correlation function and cross power spectral density functions. (8)
 - (ii) Find the cross-correlation function corresponding to the cross-power spectrum $S_{XY}(w) = \frac{6}{(9+w^2)(3+jw)^2}$. (8)